



Deliverable D3.4 

Report on the mode filtering technique  
implemented in micromagnetics code 


Project Number 101070290

Project name Nonlinear Magnons for Reservoir Computing in Reciprocal Space

Project acronym NIMFEIA

Work Package WP3 Modelling the magnon reservoir in the GHz regime

Type Report

Dissemination level Public

Lead Beneficiary UPS

Due date of delivery Month 4 – January 2023



This project has received funding from the EU Research and Innovation 
Programme Horizon Europe under grant agreement No 101070290. 

1. Summary


This report describes the implementation of the mode filtering technique related to the initial 
Milestone 4 of Work Package 3 (Modelling the magnon reservoir in the GHz regime). The 
technique is used to estimate the population dynamics of a given eigenmode of the magnon 
reservoir directly from micromagnetics simulations. We present an application of this tech-
nique to a permalloy disk with a vortex ground state and show how transient three-magnon 
processes can be studied.


2. Background


Micromagnetic simulations perform a numerical time integration of the Landau-Lifshitz-
Gilbert equation, which describes magnetization dynamics in the long-wavelength limit. The 
magnetic material studied is discretised using either the finite difference or finite element 
method, and the nonlinear partial differential equation


	 ,	 	 	 	 	 	 (1)


which represents the time evolution of the normalized magnetization vector, , is 
solved self-consistently for each finite difference or finite element cell . Here,  is the gyro-
magnetic constant,  is the effective field which encompasses all short- and long-ranged 
magnetic interactions present at site , and  is the Gilbert damping constant. More details on 
the method can be found in Ref. [1].


Here, we are interested in the nonlinear transient dynamics of particular spin wave eigen-
modes of the system, , rather than the magnetization  itself.  While  can, 
of course, be computed from , this is a computationally-intensive task at the post-pro-
cessing step so it is more useful to develop a scheme in which  can be projected direct-
ly out from Eq. (1). To lowest order, the fluctuations in the magnetization and be expanded in 
terms of these eigenfunctions


	  ,


where  are complex mode amplitudes, with the mode power being a measure of the 

mode population, . The goal is to obtain  directly from the simulations 

for a given set of  with a minimum of data post-processing.
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3. Implementation


Our implementation uses the MuMax3 finite-difference micromagnetics package [2], which is 
an open source code with a large user base (https://mumax.github.io). The implementation 
involves two steps, as discussed below.


3.1. Eigenmode calculation


The first step involves calculating the eigenmode basis functions that are subsequently used 
for the mode filtering. We consider here the example of a magnetic vortex ground state in a 5-
µm diameter permalloy disk, which has been studied extensively by members of the NIMFEIA 
consortium [3–6]. The spin wave eigenmodes of this vortex state reflect the cylindrical sym-
metry of the system and are geometrically quantised with a radial mode number  and an az-
imuthal mode number . The calculated dispersion relation for these spin wave eigenmodes 
for a 50-nm thick disk, shown for different  as a function of , is presented in Figure 1. 


The mode profiles and frequencies are obtained as follows. For a given , we simulated 
the transient response of the magnetization to an excitation magnetic field of the form 

, where the field amplitude  is taken to be
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Figure 1. Dispersion relation of spin-wave eigenmodes in a 5-µm diameter, 50-nm thick permalloy 
disk computed using MuMax3 micromagnetics simulations.  is the radial number and  is the 
azimuthal number. The right panel shows the spatial profiles of a few eigenmodes, , whose 
frequencies are indicated by symbols with thick edges. 

n m
ψnm(r)



This project has received funding from the EU Research and Innovation 
Programme Horizon Europe under grant agreement No 101070290. 

	 ,


with  being a field amplitude,  the Bessel function of the first kind,  a wave number that 
ensures mode quantisation along the radial direction , and  the azimuthal direction in radial 
coordinates.  in the sinc function is the cut-off frequency and is taken to be 50 GHz.  From 
the discrete Fourier transform of the transient response, we can identify the mode frequen-
cies and profiles for each . The spatial profile of each eigenmode, , such as those 
shown in the right panel of Figure 1, is stored as an OOMMF format file (.ovf) for future use.


3.2. MuMax3 module for eigenmode projection


The second step involves projecting the magnetization dynamics onto the eigenmode profiles 
found above. To this end, we developed a module for the MuMax3 code, ext_eigenmodepro-
jection.go, which provides the following functionalities:


1. User-supplied transverse magnetization directions,  and , imple-
mented as delta_mx and delta_my, which are orthogonal to the micromagnetic 
ground state, , i.e., . These profiles can be imported by 
calling 
        delta_mx.Add(“filename.ovf”,1)


2. User-supplied eigenmode profile, , such as those shown in the right panel 
of Figure 1, which is implemented as psi_k. This profile can be imported by calling 
        psi_k.Add(“filename.ovf”,1)


3. Computed mode amplitude a_k, which returns the vector (a_kx, ak_y, 0) where 

 . This value can be retrieved through 

        TableAdd(a_k)


This module is available at the following fork of the MuMax3 repository: 
         https://github.com/joovon/3/tree/master/engine.


4. Results


An example of the application of this module to three-magnon scattering in the vortex system 
is shown in Figure 2. Following the study in Körber et al. [6], we follow the evolution of the 
directly-excited and scattered modes for an excitation frequency  of 7.4 GHz and rf field am-
plitude of 3.5 mT at a temperature of 300 K. In Fig. 2(a), we can observe that the field excita-
tion at this frequency directly populates the first-order radial mode , which 
subsequently scatters into two  modes with frequencies close to , indicated by the 
dashed red line, through the three-magnon splitting process. 


In Fig. 2(b), we present selected mode powers computed using ext_eigenmodeprojection.-
go. For the directly-excited mode , the mode power is observed to increase 
exponentially from its thermal value over an interval of less than 10 ns after application of the 

bnm(r) = b0 J1(κnρ) eimϕ
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(n, m) ψnm(r)

δmx(r) δmy(r)

m0(r) m0(r) ⋅ δmx,y(r) = 0

ψnm(r)
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rf excitation, before saturating at a steady state value for the remainder of the simulation (to-
tal duration of 100 ns). As a point of comparison, the mode  is neither affect-
ed by the rf field excitation, nor by nonlinear scattering processes, and one can observe that 
its power remains at thermal values for the entire duration of the simulation. The largest 
power in the scattered modes is found for  and , where a 
similar exponential growth is seen over the first 10 ns, followed by a slower linear growth with 
time after saturation of the directly-excited mode. These modes exhibit the strongest three-
magnon scattering as their frequencies are roughly equidistant from  and satisfy energy 
and angular-momentum conservation. Excitation above thermal levels can also be seen for 
the neighbouring  modes, albeit with an order of magnitude less power 
and with a roll-off toward the end of the simulation. A similar behaviour can also be seen for 
the modes  at lower azimuthal mode numbers, which are also rough-
ly equidistant from  but are excited to a lesser degree; an example for  
and  is shown at the bottom of Fig. 2(b).
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Figure 2. Three-magnon scattering with a excitation field at 7.4 GHz and amplitude of 3.5 mT. (a) 
Dispersion relation showing the rf excitation frequency , along with  about which the scattered 
modes appear. Scattering mainly occurs in the gray zones, where mode frequencies are roughly 
equidistant from . Coloured dots indicate modes with powers about thermal values. (b) Selected 
mode powers for coloured symbols shown in (a). The power for  is representative of 
pure thermally-driven modes and provides a baseline for comparison with driven modes.
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These results illustrate how the mode projection method can provide additional insight into 
the transient dynamics related to three-magnon scattering processes, which can be hard to 
access through frequency-domain analyses alone. 
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