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1. Summary


This report describes an application of the mode filtering technique for micromagnetics simu-
lations that was outlined in Deliverable D3.4. Here, we discuss how the technique has been 
employed to estimate the population dynamics of spin-wave modes in a vortex state under 
different radio-frequency pulse sequences, which drive three-magnon scattering and cross-
stimulation processes. The technique provides greater insight into the different scattering pro-
cesses at play, which can only be surmised using conventional analyses of the power spectral 
density alone. 


2. Background


At the core of the NIMFEIA project is the idea that reservoir computing can be performed us-
ing nonlinear magnon interactions within a modal multiplexing scheme. As discussed in Kör-
ber et al. [1], inputs involve binary AB sequences where each symbol ‘A’ and ‘B’ represents a 
radio-frequency field pulse, whose frequency closely matches one of the pure radial spin-
wave eigenmodes  (with azimuthal number ) about a vortex ground state. Outputs are 
constructed from the power spectral density (PSD) of the scattered spin-wave modes, where 
averages over frequency bins give the output vector. 


Here, we seek to better understand the physical processes that underpin the reservoir func-
tionality. Because the azimuthal spin-wave modes are similar to backward-volume modes, the 
dispersion relation  exhibits a sharp initial decrease before transitioning to a slower in-
crease with  over a wide range of , as shown in Fig. 1. This means that below the frequen-
cies of the pure radial modes, specifically around half of these frequencies around which 
three-magnon processes occur, it is difficult to identify which scattered modes are involved 
based on analyses of the PSD alone. Moreover, we are interested in better understanding the 
transient processes involved with three-magnon scattering, in particular, cross-stimulation 
when two AB pulses overlap, which calls for a better time-resolved approach of the spin wave 
mode populations.


This report describes the use of the mode-filtering approach developed in the NIMFEIA 
project, as discussed in Deliverable D3.4, which allows us to project out the amplitudes of se-
lected spin-wave eigenmodes  on-the-fly as the magnetization dynamics is computed. 
Specifically, we use the MuMax3 open-source micromagnetics code [2] to perform a numeri-
cal time integration of the Landau-Lifshitz-Gilbert equation,


	 ,	 	 	 	 	 	 (1)


where the normalized magnetization vector  is solved self-consistently for each 
finite difference cell . Here,  is the gyromagnetic constant,  is the effective field which 
encompasses all short- and long-ranged magnetic interactions present at the site , and  is 
the Gilbert damping constant. To lowest order, the fluctuations in the magnetization can be 
expanded in terms of the spin-wave eigenfunctions
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where  are complex mode amplitudes, with the mode power being a measure of the 

mode population, . The module developed allows us to obtain  direct-

ly from the simulations for a given set of . Figure 1 illustrates the dispersion relation for 
the 5-µm diameter, 50-nm permalloy disk studied with a vortex configuration as the ground 
state, along with some eigenmode profiles.


3. Results


In order to illustrate the different transient dynamics at play, we focus here on different four-
symbol AB sequences, as discussed in depth in Körber et al. [1]. Specifically, we will restrict 
our discussion to the input parameters 7.4 GHz, 3.5 mT and 8.9 GHz, 

3.0 mT, where each symbol comprises a 20-ns pulse with a 5-ns overlap between suc-
cessive pulses. By inspection from Fig. 1, these input frequencies correspond to the pure radi-
al modes (1,0) and (2,0).


Figure 2 shows the population dynamics involving directly excited and scattered modes for the 
two baseline cases, ‘AAAA’ and ‘BBBB’. In each case, the dynamics were computed for 100 dif-
ferent realizations of the random thermal field assuming a temperature of 300 K. The inclu-
sion of thermal fluctuations means that we are dealing with a Langevin dynamics problem 
whereby each simulation run can result in quantitatively different dynamics, mimicking a real-
istic experimental scenario. In Fig. 2(a), the response of the directly-excited pure radial modes 
to the ‘AAAA’ sequence is shown. The dark, solid lines represent averages over the ensemble 
of 100 realizations, while the lighter lines in the background represent the different realiza-
tions for the (1,0) case. As expected, the (1,0) mode exhibits the greatest response to the 
‘AAAA’ stimulus, where a steady state population is reached after a sharp transient response 
over a few ns. We also note that there is very little dispersion in the population dynamics over 
the different thermal realizations, which indicates that thermal activation only plays a small 
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Figure 1. Dispersion relation of spin-
wave eigenmodes in a 5-µm diame-
ter, 50-nm thick permalloy disk 
computed using MuMax3 microma-
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role to direct excitation. Off-resonant excitation of the other pure radial modes, (0,0) and 
(2,0), can also be seen, where similarly to the (1,0) mode a large steady-state population a few 
orders of magnitude above thermal levels is attained after a sharp transient phase. Figure 2(b) 
shows similar behaviour in response to a ‘BBBB’ sequence, where instead it is the targeted 
(2,0) mode that reaches large steady state values, with the other radial modes (0,0) and (1,0) 
also exhibiting a strong response above thermal levels.


The population dynamics of the primary scattered modes are shown in Figs. 2(c)-2(f).  For the 
‘AAAA’ sequence, the main three-magnon scattering channels involve the  
modes on the  branches [Figs. 2(c) and 2(e)]. These modes exhibit growth from their 
thermal levels as soon as the directly-excited modes are driven out of thermal equilibrium. 
The  modes grow at a near exponential rate throughout the duration of the ‘AAAA’ 
sequence, while the populations of the  modes appear to saturate toward the end 
of the sequence. In contrast to the directly-excited modes, we can also observe a strong dis-
persion in the population dynamics of the scattered modes from one simulation to the next, 
which can be seen in the large spread of the light purple curves for the  
modes in Figs. 2(c) and (e). For the ‘BBBB’ sequence, the onset of the scattered modes is also 
characterized by an exponential growth, however in one case ( ) a gradual decrease 
in the population levels is observed after a maximum is reached [Fig. 2(d)], while for the other 
( ) the mode population saturates with time until the pulses are switched off. Like 
for the ‘AAAA’ case, the scattered modes also exhibit strong dispersion between the different 
thermal field realizations.


A broader view on these dynamics is given in Figs. 3 and 4, which illustrate the transient dy-
namics and the relationship between the different directly-excited and scattered modes in-
volved with each of the ‘AAAA’ and ‘BBBB’ sequences. The idea of this representation is as fol-
lows. To schematize the population dynamics shown in Fig. 2, we use a series of circles to rep-
resent the time evolution of the mode population, where the radius of each circle is propor-
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Figure 2. Population dynamics for 
selected  modes under ‘AAAA’ 
(a, c, e) and ‘BBBB’ (b, d, f) excitat-
ons, where 7.4 GHz, 

3.5 mT and 8.9 GHz, 
3.0 mT. Each pulse sequence lasts 20 
ns, with a 5-ns overlap between 
sequences. Solid curves represent 
averages over 100 different realizat-
ion of the random thermal fields. 
The curves are coloured according 
to the radial index, .
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tional to the mode population on a logarithmic scale at a given instant. Each circle is colour-
coded from dark blue to light blue to indicate the direction of time. This scheme is illustrated 
in Fig. 3(a) for three different but representative behaviours of the mode population dynam-
ics. The circles are then overlaid on top of one another to further condense the time evolution 
of the mode onto a point. Figure 3(b) shows the dispersion relation of the vortex eigenmodes, 
where modes excited either directly or indirectly by the ‘AAAA’ excitation are represented 
with the overlaid, coloured circles just described and all other modes are shown as small, gray 
dots. The positions of the excitation frequency, , and half its value are also indicated. This 
representation allows us to deduce at a glance the modes that are the most active under a 
given stimulus. As we mentioned earlier, the uniform rf field couples most strongly to the (1,0) 
mode, but we can deduce straightforwardly from this figure that all pure radial modes  
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Figure 3. Population dynamics in response to an 
‘AAAA’ input, where 7.4 GHz, 3.5 mT. (a) 
Schematic of the time dependence of mode populat-
on dynamics, condensed onto overlaid coloured cir-
cles. (b) Dispersion relation with coloured circles indi-
cating directly-excited or scattered modes. (c) Power 
spectral density computed from the mode dynamics.
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persion relation with coloured circles indicating di-
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density computed from the mode dynamics.
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studied are driven above their thermal levels. We can also see that the main channel for 
three-magnon scattering occurs around  as discussed previously, with a finite con-
tribution also seen in the low and high 30s along with modes in between 10 and 20. As a 
point of comparison, the power spectral density of all the modes is shown in Fig. 3(c), where 
the scattered modes are represented by four dominant peaks around . While frequency 
binning has been used successfully to construct the output space vectors for pattern recogni-
tion, knowledge of the individual mode populations may prove to be useful for processing 
more complex signals.


Figure 4 shows the response to a ‘BBBB’ excitation. In contrast to the ‘AAAA’ case, the main 
three-magnon scattering occurs for azimuthal indices 10 to 12, with a larger number of 
modes contributing from the 1,2 and 0,3 branches. We also see a significant contri-
bution from modes 30. As expected, the corresponding PSD shown in Fig. 4(b) is much 
richer and features a greater number of well-defined peaks in the scattered mode spectrum, 
but again direct access to the mode population dynamics gives a more detailed view on the 
different scattering processes at play.


We now turn our attention to mixed ‘AB’ sequences, where cross-stimulation is conjectured to 
play a key role in the three-magnon scattering process [1]. Specifically, we compare the six 
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Figure 5. Population dynamics in response to four-symbol ‘AB’ sequences, with equal proportion of ‘A’ and ‘B’.
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combinations of four-symbol ‘AB’ sequences in which there are two occurrences each of ‘A’ 
and ‘B’. The corresponding population dynamics are shown in Fig. 5. As for the previous cases, 
the corresponding power spectral density of the spin-wave modes is also given. We can ob-
serve, qualitatively, certain features in the power spectrum that differ between the symbols, 
which is what allows us to use machine learning on the frequency-binned outputs to classify 
these different sequences [1]. Comparison with Figs. 3 and 4 also allows us to deduce that the 
mixed ‘AB’ sequences result in a greater number of modes that take part in the scattering pro-
cesses across a broader range of azimuthal and radial numbers. For example, the primary 
‘BBBB’ three-magnon response involving mainly 10 to 12 modes is extended across 

10 to 20 for certain ‘AB’ combinations, such as AABB, ABAB, and ABBA. Similarly, the 
primary ‘AAAA’ three-magnon response involving mainly 33,34 is extended across 
28 to 38, which appears for almost all of the combinations considered. The greater number of 
modes excited is consistent with the appearance of new scattering channels when ‘A’ and ‘B’ 
pulses overlap.


Some examples of qualitatively different cross-stimulation processes are shown in Fig. 6 for 
three selected modes in response to ‘ABAB’ and ‘BABA’. Schematics of the pulse sequence are 
shown in the inset at the top of the figure. Figures 6(a) and (b) illustrate the population dy-
namics of the (1,46) mode, which remains largely at thermal levels under ‘AAAA’ but is driven 
two orders of magnitude above thermal levels under ‘BBBB’ (as indicated by the grey curves). 
Under ‘ABAB’ [Fig. 6(a)], the presence of the existing ‘A’ pulse appears to inhibit the growth of 
the mode when the ‘B’ pulse is applied. The growth and decay profile of the mode varies be-
tween the two applications of the ‘B’ pulse, which reflects the short-term memory of the 
reservoir. A similar behaviour is observed for the ‘BABA’ sequence [Fig. 6(b)], where the initial 
growth driven by the ‘B’ pulse is inhibited as soon as the ‘A’ pulse is switched on. Again, a 
clear memory effect can be seen in the shape of the population profile.


m =
m =

m = m =

(a)

n
k

10−3

10−2

10−1

100

t (ns)
0 20 40 60 80

(b)

n
k

10−3

10−2

10−1

100

t (ns)
0 20 40 60 80

(c)

n
k

10−3

10−2

10−1

100

t (ns)
0 20 40 60 80

(d)

n
k

10−3

10−2

10−1

100

t (ns)
0 20 40 60 80

(e)

n
k

10−3

10−2

10−1

100

t (ns)
0 20 40 60 80

(f)

n
k

10−3

10−2

10−1

100

t (ns)
0 20 40 60 80

AAAA

BBBB

ABAB BABA

Figure 6. Population dynamics for 
selected  modes under ABAB 
(a, c, e) and BABA (b, d, f) excitat-
ons, where 7.4 GHz, 

3.5 mT and 8.9 GHz, 
3.0 mT. Each pulse lasts 20 ns, with a 
5-ns overlap between pulses. (a,b) 
mode (1,46), (c,d) mode 
(3,4), (e,f) mode (4,29). For compa-
rison, the population dynamics for 
‘AAAA’ and ‘BBBB’ sequences are 
shown in grey. Schematics of the 
pulse sequences are shown in the 
top inset.
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An example of mode amplification is shown in Figs. 6(c) and (d) for the mode (3,4). This mode 
is driven above thermal levels under both ‘AAAA’ and ‘BBBB’, where steady state is gradually 
reached after some initial sharp transients. Under ‘ABAB’, the application of the ‘B’ pulse re-
sults in a sharp increase in the mode population, which is even larger after the second ‘B’ 
pulse. Similar amplification can also be seen for the reverse sequence [Fig. 6(d)]. For both se-
quences, we observe that the population levels return to the baseline set by the ‘A’ pulse dy-
namics when the ‘B’ pulse is switched off. 


Finally, Figs. 6(e) and (f) for mode (4,29) illustrate how a largely dormant mode under an 
‘AAAA’ excitation can stimulate strong scattering when combined with a ‘B’ pulse. Here, the 
mode remains close to thermal levels under ‘A’ alone, but provides an order-of-magnitude 
larger response for the ‘B’ pulse when it is applied. Again, strong non-commutativity and 
memory effects can be seen in the shape of the population profile.
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